Running Head: Selecting an Operating System for Edge and High Security Devices
 1
Selecting an Operating System for Edge and High Security Devices

 24

Selecting an Operating System for Edge and High Security Devices

Kyle Willett

Illinois Institute of Technology

Abstract

This paper endeavors to explain to chief information officers and chief information security officers the need for selecting a high security operating system for edge devices such as routers and firewalls as well as edge web servers. It also explains that high security workstations also need a high security operating system. The paper introduces and explains the features of the OpenBSD Unix-like operating system for both use cases and explains at a medium high level the features of the OpenBSD operating system and why it is well suited for the roles mentioned and this is accomplished by looking at risk management strategies and special NIST publications to include special publication 800-53 and 800-39. The paper looks at some of the short comings or caveats of OpenBSD before concluding with some real user testimonials and recommending the operating system for the use cases in question.
Selecting an Operating System for Edge and High Security Devices

Network edge devices such as routers and firewall as well as some special case web servers present a unique security challenge to the administration team. They are on the frontier of the network and are responsible for protecting the inner network devices. If an edge device is compromised, attackers could run rampant through the network attacking the frequently softer targets inside the network. Protecting these devices is of paramount importance to the system administration and network administration team and should be an important item to secure for any chief information security officer; therefore, important care should be placed into the selection of the operating system for such a device. Similar to the first use case of edge devices, secure workstations, often mobile laptops but not necessarily limited to laptops are also a special case. These devices are frequently used for research work on new products for the company so can contain business secrets that if to fall into the wrong hands could spell disaster for the business. If the business is engaged in contract work for the US government the research information on said high security device could even contain classified information that the loss of could impact the company for decades with anything from lawsuits to not being chosen for contracts again because of past mishaps. Securing data for these frequently mobile workstation has three areas for the cyber security team to consider: data at rest, data in motion, and the security of the device itself to hacking attempts (This last case is shared by the edge device use case). Mobile workstations can have data at rest secured by what is known as full disk encryption and that protects from data loss due to a lost or stolen laptop. Data in motion can be protected by having a secure operating system that encrypts data being sent over the Internet and that is difficult to breach the local system over the network. This ties into the third point and that is securing the device against hacking attempts. It has been said that the only way to completely secure a device is cut it off from the network but that is not always possible to do and still get work done in an Internet connected society so planning for not if a breach occurs but when is important. If a rogue actor gets into the system one wants them to do as minimal amount of damage as possible. Now that we have seen the use cases we are trying to protect, it is time to introduce the ideal product to use for protecting edge devise and high security devices. The remainder of this paper will be about why OpenBSD is the ideal solution to protect said devices.

Introducing OpenBSD, Michael Lucas describes OpenBSD as, “widely regarded as the most secure operating system available anywhere under any licensing terms” (Lucas, 2013, p. xxix). OpenBSD traces its roots back directly to the original AT&T UNIX of the 1970s, specifically the branch created at the University of California at Berkley. Specifically two modern open sources BSDs were created out of that work at UC Berkley: NetBSD and FreeBSD. Both were projects started about the same time from a version of BSD UNIX called BSD 4.4-Lite2. All modern BSD operating systems from ios on Apple smart phones to Apple OSX to the operating system used on Sony Playstations 3 and 4 to the four main BSD projects- FreeBSD, OpenBSD, NetBSD, and Dragonfly BSD- to their numerous off shoots like hardened BSD, pfsense, freeNAS, GhostBSD, and many others can all trace their roots back to 4.4 BSD and the early FreeBSD and NetBSD projects. OpenBSD is itself a fork of an early version of NetBSD. The creator of OpenBSD, a man by the name of Theo de Raadt, was a contributor to the NetBSD project who thought that security should be a top concern of the project and was very vocal about it. Raadt’s increasingly vocal arguments eventually lead to him loosing commit access to the repository of the NetBSD project. His response was to fork NetBSD 1.0 and start the OpenBSD project in October of 1995 (Lucas, 2013, p. xxxi-xxiii). Michael Lucas, who is cited here because he literally wrote the book on various BSD operating systems and has used both FreeBSD and OpenBSD professionally, and seems like the foremost leader in educating about the benefits of BSD operating systems, asks this question:
What makes OpenBSD OpenBSD? Why bother with yet another Unix-like operating system when there are so many out there, several closely related to OpenBSD? What makes this operating system worth a computer, let alone worthy of protecting your company’s assets? (Lucas, 2013, pg. xxxv)
Lucas lists six compelling strengths of the operating system that will be explored in greater depth later on, they are: Portability, Power, Documentation, Freedom, Correctness, and Security. Briefly touching on each of these strengths before going into more detail; portability means that OpenBSD runs on a wide variety of hardware from AMD64 servers, laptops, and desktops to MIPS routers, and ARM system-on-a-chip solutions, to powerful POWER and SPARC servers, to older relics from the past like DEC VAX computers. The OpenBSD website used to contain a little bit about why so many esoteric architectures are supported and it read:
People sometimes ask why we support so many odd machines. The short answer is "because we want to." If enough skilled people (and sometimes "enough" is only one really skilled person!) wish to maintain support for a platform, it will be supported. The OpenBSD platforms include 32-bit and 64-bit processors, little and big endian machines and many different designs. Supporting unusual platforms has helped produce a higher-quality code base. (openbsd.org/faq, 2018)
The next strength is power. Since OpenBSD supports so many older hardware architectures it needs to be conservative with resource utilization such as processor utilization and RAM. Lucas says that an Intel 486 which supported very little RAM can still make a capable OpenBSD server (Lucas, 2013, pg. xxxvi). The next strength is Documentation and OpenBSD is regarded as having the most extensive documentation of any operating system. Documentation errors are treated as serious bugs even. Next, OpenBSD is free in both senses of the word, free as in cost and as in freedom. OpenBSD is released under the terms of the BSD and ISC licenses as well as a few other permissive licenses for some content. Lucas sums up the permissive license of OpenBSD as the user should be free to distribute, sell, give, modify, and use the software while at the same time the user should not claim that they wrote the software (xxxvii). Points five and six of the strengths of OpenBSD can not really be treated distinctly because they go together. Those points are correctness and security. Correct code is secure code so to say. Going back to what was said about portability Lucas points out that:
Exposing the code to “weird” environments such as ancient VAXes is part of the discipline; OpenBSD developers insist that some subtle bugs (and a few less subtle ones) have been pinpointed only during testing on one of OpenBSD’s less mainstream architectures. Fixing those bugs benefits all users. (Lucas, 2013, pg. xxxviii)
Now that the reader is familiar with what OpenBSD is and some of the goals of the project as well as its strengths lets look at the features that make it the most secure OS on the planet in more detail.

There are several features of OpenBSD that aid in it being a high security operating system. In fact new features are being added so often, approximately every six months that any print resource quickly falls behind with the number of security features; however, this paper will endeavor to explore the features available up through version 6.5 of OpenBSD. Some features we will look at include privilege separation, W ^ X, guard pages, address space randomization, file flags, secure levels, pledge, and unveil. Some of these features are highly technical and rely on an intimate knowledge of OS level C programming, so a more executive level summary of the features will be attempted to be presented. The first feature is inherited from OpenBSD’s UNIX roots and is privilege separation. OpenBSD supports something called login classes and there are three types: one for daemons and two for users, a default and a staff group. The default class gives modest system resources and access to the system and the staff class gives no limits on memory use and allows for a high number of processes to be run concurrently. Very fine grained controls can be specified with such variables as cputime which controls the amount of CPU time any one process can use, maxproc the maximum number of processes open for a user, and stacksize which sets the maximum stack size per process for that user and this is just a sampling of the variables that can be set (Lucas, 2013, pg. 94-97). There are also unprivileged accounts for daemon processes to use such as nobody, www, sshd, named, ntp, etc. Unprivileged accounts do not have a login shell such as the Bourne shell or others and they do not have a home directory. Lucas explains how this helps improve system security:
How does all this enhance system security? Let’s pick on the web server, a common intrusion vector, as an example. OpenBSD runs its web server as the user www. Suppose an intruder discovers a security flaw in your web site and can use this to make the web server execute arbitrary code. … the intruder will probably try to access a command prompt on the system. The www user has a shell that specifically disallows a command prompt. While this doesn’t categorically prevent the intruder from getting a command prompt, it does make it much more difficult. But our intruder is cleaver. Through really excellent intrusion skills, he makes the web server open a high-numbered port that dumps the client into a root shell. He now has access to a command prompt and can wreak untold damage … or can he? He has no home directory, and no permissions to create one. Any files he wants to store must go into a globally accessible directory such as /tmp or /var/tmp, increasing visibility. The web server configuration file is not owned by the www user. Even if the intruder has a path into the web server, he cannot reconfigure it. … The www user doesn’t have access to anything on the system, actually. Additionally, OpenBSD’s built-in web server chroots itself. Having broken into the web server program, the intruder now must escape the chroot and penetrate a privileged program. (Lucas, 2013, pg. 102-103)
As the reader can see OpenBSD takes user accounts from ancient UNIX and just builds upon them making the job of an attacker much more difficult. The next security feature that OpenBSD pioneered is known as W ^ X which stands for write XOR execute. The address space of a process or the kernel can be writable or executable but not both. OpenBSD was the first operating system to pioneer this feature in version 3.3 in 2003. Similarly, guard pages where incorporated into OpenBSD early. Some Linux distros are just starting to include this feature and OpenBSD included it in 2003! From the mailing list archives: “malloc guard pages. Insert an unreadable/unwriteable page after each page size allocation to detect overrun. This is somewhat electric fence like, while attempting to be mostly usable in production” (malloc guard pages, 2003). OpenBSD has been implementing address space randomization since 2003 and has finished the work in 2013. The final version of address space randomization is known as PIE: position independent executable. With this feature, code is not required to be in the same place each time a program executes so an attacker can not attack with a known offset to get data that they should not have access to (Miller, "OpenBSD's Position Independent Executable Implementation", 2008). Lucas devotes some space to talking about address space randomization in his book and provides an explanation that the reader may find helps cement the reasoning behind it:

If they [the attackers] know that program A usually loads after program B, and they know they can make program B write to memory space outside its allocation, they can guess that they can write to program A’s memory space and make program A fail in a predictable manner… OpenBSD randomizes where it allocates memory. Two programs started after the other don’t get consecutive memory blocks. … Intruders cannot use one program against another in this manner. (Lucas, 2013, pg. 174)
Another unique way that address space randomization manifests itself inside OpenBSD is the recently famous way the kernel relinks itself each boot starting in version 6.2. The OpenBSD journal describes the feature as follows:

A unique kernel is linked such that the startup assembly code is kept in the same place, followed by randomly-sized gapping, followed by all the other .o files randomly re-organized. As a result the distances between functions and variables are entirely new. An info leak of a pointer will not disclose other pointers or objects. (" Kernel relinking status from Theo de Raadt", 2017)
The next security feature of OpenBSD is file flags, being an older feature; they are well covered in the Lucas text. File flags are unique to BSD linage operating system and are shared by other BSDs like FreeBSD. There are five file flags in OpenBSD: sappnd, uappnd, schg, uchg, and nodump. Each flag will now be discussed in more detail. The sappnd flag makes it where a file can only be appended to not deleted or have its existing contents modified. Only root can change this flag to off and only below secure level 1 (more on secure levels shortly). This file flag is very useful for log files because it makes it impossible for intruders to cover their tracks. The next file flag is uappend and it is similar to sappnd but can be set or unset by the file owner in addition to root. It can be handy for protecting certain user files from accidental deletion. The schg file flag makes it where a file, “cannot be edited, moved, replaced, or overwritten” (Lucas, 2013, pg. 175). Only root can set or unset this file flag and it can not be removed when at secure level 1 or higher. Just like with sappnd and uappnd there is a user schg file flag called uchg. Uchg makes a file immutable and can be set by the file owner or root but can be removed at any run level so is less useful for protecting from attackers but can prevent important files from modification. The final file flag, nodump, simply tells OpenBSD based tape backup programs to not back up this file. Not all backup software honors this file flag. File flags sound like a sure fire way to secure an OpenBSD system but as with many security measures they make some tasks more difficult. Lucas cautions with this:
OpenBSD doesn’t flag any files out of the box, so you’ll need to add flags yourself if you want them. Before you go nuts, however, note that adding file flags increases the overhead for system maintenance. If upgrading a system is hard, the sysadmin won’t want to do it. Is it more secure to have all your programs in /bin immutable, or is it more secure to simplify upgrades, updates, and application of security patches? (Lucas, 2013, pg. 177)
Secure levels go hand and hand with file flags but there is more to them than just controlling rather or not a file flag can be set. Secure levels are another feature shared by BSD linage operating systems. Secure levels run from -1 to 2 and OpenBSD runs at secure level 1 by default (Lucas, 2013, pg. 177). Contrast that with FreeBSD that runs at secure level -1 by default (Lucas, 2019, pg. 195). The secure level can be increased at anytime but can not be decreased on a running system. Secure level -1 is kind of the security measures off secure level. The system is not necessarily insecure, but it is just that no special security features are in play. It is useful for removing file flags that should not have been set or that need to be unset. Secure level 0 is special. Setting the system to use secure level 0 means that the system behaves like it is in secure level -1 mode until it reaches the multiuser target and then the secure level is automatically raised to 1. Secure level 0 is rarely used. Secure level 1 sets several system rules that make attacking an OpenBSD system more difficult. The settings will be enumerated here: /dev/mem and /dev/kmem can not be written to even by root, the raw disk devices of all mounted file systems are read only, schg and sappnd file flags can not be removed, the sysctl fs.posix.setuid cannot be changed, the power button no longer initiates a clean shutdown- if the power button is pressed nothing happens, the sysctl net.inet.ip.sourceroute cannot be changed- this means a program can not dictate how its packets transverse the network, the sysctl machdep.kbdreset cannot be changed- if set to 0 the key combination ctl-alt-delete is ignored, the ddb.console and ddb.panic sysctls cannot be changed- this keeps an attacker from gaining unlimited system resources through the debugging tools, a sysctl for the X windows system called machdep.allowaperture cannot be raised, and finally general purpose input output controllers (GPIO) cannot be further configured. Secure level 2 contains all the security measures of secure level 1 but adds the following even more stringent restrictions: raw disk devices are always read only- one cannot format any device, the system clock cannot be moved backwards or close to the overflow point, the pf firewall rules cannot be altered, kernel debugger sysctl values cannot be changed (Lucas, 2013, pg. 178-180). Lucas cautions would be system administrators and cyber security managers from thinking that file flags coupled with secure levels are a perfect solution:

There are many ways for an intruder to lever himself into the system. Relying on secure levels to protect you is unwise. Use them and consider them a tool in your kit, but don’t think they are a panacea for every problem. (Lucas, 2013, pg. 181)
The last two security features of OpenBSD are relatively new and have been released since the 2013 publishing of Absolute OpenBSD 2nd Edition; therefore, the actual conference papers about their implementation will have to be cited. The OpenBSD manual page describes the pledge system call as follows:

The pledge() system call forces the current process into a restricted-service operating mode. A few subsets are available, roughly described as computation, memory management, read-write operations on file descriptors, opening of files, and networking. In general, these modes were selected by studying the operation of many programs using libc and other such interfaces, and setting promises or execpromises. Use of pledge() in an application will require at least some study and understanding of the interfaces called. Subsequent calls to pledge() can reduce the abilities further, but abilities can never be regained. A process which attempts a restricted operation is killed with an uncatchable SIGABRT, delivering a core file if possible. ("pledge(2) - OpenBSD manual page server", 2019)
Bob Beck at BSDcan 2018 gave a presentation on both pledge and unveil that explains the benefits of security features such as these. Beck describes the OpenBSD NTP service. It is broken down into three processes that pledge access to certain features for example, the NTP process pledges STDIO and inet, the DNS process pledges STDIO and dns, and the master process pledges settime. This is useful to process that start as root and can then drop their privileges to a regular user account or an even more limited account specific to daemons. Pledge can bring security features to non setuid process too- processes that do not start as root. The network program NC is one such program Beck describes because it can do several network functions each with a specific pledge. The web browser Chrome has been pledged on OpenBSD as well. Unveil does to file system access what pledge does to user access. Unveil limits access to the file system. Pledge was first available in OpenBSD release 5.9 and Unveil was first available in release 6.4 (Beck, 2018). Beck’s presentation in 2018 was when unveil was still being designed, and the next year Beck gave another presentation on the more technical implementation of unveil. Beck says Unveil, “Unveil parts of a restricted filesystem view” (Beck, 2019). Beck says that oftentimes when a program starts up it needs more access to the filesytem than when it is actually doing work- in short the program does not need as many privileges as when it initially starts. Coupled with pledge, unveil lets a program basically say, “I promise to only need these things in the future” (Beck, 2019). Unveil is like a softer pledge, “When you break a pledge, your program is dead” (Beck, 2019). In contrast unveil makes things look different to the program. Beck asks the audience to consider the users(1) program that shows users of the system. Unveil is called and restricts the users program to read access of a file utmp only, and then immediately aftwerwards pledge is called and removes the ability for future unveils. Beck then talks about the NC networking command again and how unveil was coupled with pledge to make it, “Harder to usefully compromise” (Beck, 2019). Beck had the idea of using unveil to restrict the Chrome Browser to only the downloads folder so say a rogue java script can not read an arbitrary file the user has read access to. Fixing chrome to work like this was difficult Beck says but the OpenBSD developers worked with Chrome and up streamed these changes to the browser. Starting in OpenBSD 6.5 Chrome can not read ones .ssh directory and read keys (Beck, 2019). Pledge and unveil represent the bleeding edge of security research on OpenBSD and also are the last general security features covered in this paper. We have looked at privilege separation by user accounts, write XOR execute, guard pages, address space randomization both in position independent executables and in the kernel, file flags and secure levels, and pledge and unveil. We could dig into security features of OpenBSD that are specific to particular use cases such as edge and high security workstations but instead we will look at how OpenBSD fits into treating risk in an enterprise risk management plan.

The text book Management of Information Security by Michael Whitman and Herbert Mattord says that there are five actions one can use to treat risk: defense, transference, mitigation, acceptance, and termination. We will endeavor to look at how OpenBSD when selected for the use cases we are looking at provides mitigation via defense, mitigation, and acceptance (Whitman and Mattord, 2019, pg. 368). Defense risk treatment strategy attempts to stop the exploitation of weaknesses in the product. As we have seen in earlier sections OpenBSD provides several technologies to prevent intrusion. These technologies such as privilege separation, write XOR execute memory pages, address space randomization, file flags and secure levels, and pledge and unveil all make the life of an attacker harder. Lucas in his text identifies four types of attackers: script kiddies, botnets, disaffected users, and skilled attackers (Lucas, 2013, p. 170-171). To use a metaphor, locking ones cars doors does not deter every attacker because they can still break the glass window and unlock the car but it deters opportunistic attackers that are looking for soft targets. The defense risk treatment technological mitigation methods OpenBSD provides make it one of the hardest nuts to crack so to say so only the most determined of attackers will persist. The opportunistic script kiddie will just turn their attention to a more poorly defended system for example. No Operating System exposed to the Internet will ever be 100% secure at preventing every attack including OpenBSD. The risk management approach then turns to mitigation- minimizing the amount of damage an attacker can cause and making sure that it is detected as early as possible. The privilege separation mentioned earlier and the least privilege access control method mentioned in NIST special publication 800-53 on page 30-32 go hand in hand. OpenBSD uses extensions to standard Unix users and groups to make sure that system processes are running with the least privileges required to do their jobs and uses pledge and unveil to make sure that the privileges are further restricted to the lowest levels needed to perform a task. While not gone into detail in the technical section of this paper OpenBSD also pioneered the use of the sudo tool to allow human administrator accounts to not be given full root privileges to perform their tasks but instead possibly be limited to a single command even that they can execute. Lucas provides a whole section of his book on sudo but it has since been obsoleted by an even newer tool called doas that allows an administrator the ability to perform a given task as another user further aiding the least privilege principal recommended in NIST 800-53. NIST 800-53 goes on to list other risk management strategies that should be employed, one of which is continuous monitoring Standard CA-7 pg. 75. OpenBSD meets this standard by sending out regular emails to the system’s root email account with a security audit. The man page afterboot and security specifically address what is examined on a daily basis and is emailed to the root user daily. In the interest of brevity the daily security cron job checks for suspicious activity, suspicious permissions, can be configured to check for changes to system files, checks for package instillation change status (addition or removals), and change in special permissions like setuid and setgid programs (security man page, 2019). NIST 800-53 lists configuration management and the baseline configuration in sections CM-1, CM-2, and CM-3 on pages 79-81. OpenBSD provides a secure baseline configuration that is designed to be secure by default and require only minimal changes to the system. The afore mentioned security program runs daily to report any changes to the system files and file flags can be set to make the system configuration files immutable while the system is running. NIST 800-53 has standard SA-5 about system documentation and says that documentation should be available that mention: “1.User-accessible security and privacy functions and mechanisms and how to effectively use those functions and mechanisms; 2.Methods for user interaction, which enables individuals to use the system, component, or service in a more secure manner and protect individual privacy…” (NIST 800-53, 2017, pg. 205). OpenBSD provides a robust manual page system that is arguably far better than its competitors that describe with examples how to configure each system tunable, each system call, each system program, and each security feature. Errors in documentation are not treated as an afterthought but are treated as actual bugs to be fixed. NIST 800-53 section SC-13 on pages 240-241 talk about cryptographic protections. OpenBSD by default encrypts the swap partition on the hard disk or solid state disk used for the root file system and allows for full disk encryption from setup encrypted with the hardware assisted AES algorithm. Standard SC-28 pg. 247-248 talks about protecting information at rest and the same full disk encryption in OpenBSD meets that standard as well. Looking at The CIS Critical Security Controls for Effective Cyber Defense Version 6.1 documentation it says on page 13 that:
As delivered by manufacturers and resellers, the default configurations for operating systems and applications are normally geared to ease-of-deployment and ease-of-use –not security. Basic controls, open services and ports, default accounts or passwords, older (vulnerable) protocols, pre-installation of unneeded software; all can be exploitable in their default state. (Critical Security Controls for Effective Cyber Defense, 2016, pg. 13)

This is simply not the case with OpenBSD. OpenBSD is designed to be secure by default and have sane defaults. It only installs the sets the system administrator selects during install and a minimal install really is a minimal install with no extra packages. Even a full install with the GUI packages install is expected to be a secure by default setup. There are no ports left open to attack, default accounts or passwords, or unwanted software. In fact unless the system administrator chooses to enable SSH during setup the system is not even remotely accessible. The CIS document goes on to list several foundational things that can be done to improve cyber security. OpenBSD provides ways to do all of these and most of them it does by default. Standard CSC 3.1 states that hardened versions of operating system install media should be created. As described earlier the default fresh from the Internet install media for OpenBSD is sufficiently hardened. Standard CSC 3.4 says that all remote administration should be preformed over a secure channel, OpenBSD pioneered SSH and is the default way for managing a remote system over the Internet with the other two being serial console or direct console access with a monitor and keyboard. CSC 3.5 states that critical system files should be checked for file integrity to ensure that they have not been altered. OpenBSD runs security audits nightly with the security script and provides file flags as discussed in the file flags section that can make important file immutable by anyone including the root user. Turning the attention to a more macro view of information security we look at NIST special publication 800-39 and what it has to say about the trustworthiness of an information system:
Trustworthiness can also be applied to information systems and the information technology products and services that compose those systems. Trustworthiness expresses the degree to which information systems (including the information technology products from which the systems are built) can be expected to preserve the confidentiality, integrity, and availability of the information being processed, stored, or transmitted by the systems across the full range of threats. Trustworthy information systems are systems that have been determined to have the level of trustworthiness necessary to operate within defined levels of risk despite the environmental disruptions, human errors, and purposeful attacks that are expected to occur in their environments of operation. (NIST 800-39, 2011, pg. 26)

NIST 800-39 goes on to say:
Information technology products and systems exhibiting a higher degree of trustworthiness (i.e., products/systems having appropriate functionality and assurance) are expected to exhibit a lower rate of latent design and implementation flaws and a higher degree of penetration resistance against a range of threats including sophisticated cyber attacks, natural disasters, accidents, and intentional/unintentional errors. (NIST 800-39, 2011, pg. 27)
I think the preponderance of the evidence shows that OpenBSD is a very trustworthy operating system platform for an information system. From the project’s focus on code correctness, to the perpetual audit of code, to being pioneers in the area of security all things point to OpenBSD being the operating system of choice where a high security operating system is needed.

There are several caveats to using OpenBSD as the operating system of choice for a given information system. I am hesitant to say disadvantages because several of the caveats actually increase security, but some make the life of a system administrator more difficult and still others make some production use next to impossible. Chapter 11 of the Whitman and Mattord text describes the importance of remediating vulnerabilities. The simple fact is that a mathematical proof that a given piece of software will perform one given way is extremely difficult to do in the field of software engineering so most code shipped is sort of best effort- meaning that bugs can and will be found in the code that lead to crashes or security problems. OpenBSD is famous for having only two remote vulnerabilities in its existence, but local vulnerabilities do crop up from time to time and the system needs to be patched. OpenBSD’s release cadence is 6 months, and that is the same as the non LTS releases of popular server Linux distributions like Ubuntu. At the time of this writing 6.5 and 6.4 are supported releases of OpenBSD. Each release is given one year of support. Very soon release 6.6 will come out and 6.4 will stop being supported. The OpenBSD team aims for April and October releases- during the writing of this paper 6.6 came out on October 17, 2019. There is no long term service equivalent with OpenBSD that popular server Linux distributions enjoy; for example Ubuntu 18.04 enjoys free support from 2018 to 2023 and optional paid support for even longer and the popular Red Hat and CentOS Linux server OS supports a 10 year product life cycle for security fixes. OpenBSD is 1 year and that is it. Also, unlike its cousin FreeBSD, OpenBSD does major changes between each release. For example 6.6 will have major changes to 6.5 whereas FreeBSD 12 to 12.1 is only minor non API breaking changes. What does all this mean? It means that a company utilizing OpenBSD that wants to stay on a supported version will have to update at least yearly to a new major version. This means testing to make sure that the software and configurations in use will continue to work on the new version and a more hectic pace for the system administration team versus the set it and forget it approach of the long term service Linux distributions. Until very recently it was almost better to do no patching at all of vulnerabilities and just wait the 6 months till a new release came out because OpenBSD required downloading source code patches and recompiling the base system with said patches applied. As one could imagine this was time consuming, resource intensive, and took a great deal of staff time; fortunately, a tool called syspatch was created and it installs base system security patches in a binary format without having to do compilation on a production system! Syspatch was released with OpenBSD 6.1 in 2017. Even more recently, as in while writing this paper recently, a post hit the announce mailing list saying the package system had been upgraded to support non base system software too such as ports and packages installed this is only supported on 6.5 release or newer versions(Rapenne, “OpenBSD -stable binary packages”, 2019). The other caveats or limitations of OpenBSD are of a more technical nature and will not be going into depth but are perhaps a topic for a future paper. OpenBSD does not support loadable kernel modules meaning the whole kernel is one monolithic whole. Virtualization technologies like virtual box do not work on OpenBSD because of this reason and the Windows emulation layer wine no longer works on modern OpenBSD. OpenBSD is in the process of growing its own home grown virtualization platform. Binary compatibility with Linux applications was removed for security reasons but that also is a huge dampener for compatibility. The Unix Fast filing system is the only supported install file system also known as UFS or FFS for Unix file system or fast file system. This introduces numerous technical limitations compared to a more feature rich modern COW file system like ZFS found in FreeBSD or Solaris or even nowadays Linux. Finally, as explored in-depth in the first third of this paper OpenBSD is a security pioneer, introducing security features that are only later adopted by other operating systems and OpenBSD is also a sort of niche operating system used mostly in situations where security is the number one concern this means that some third party applications can crash frequently on OpenBSD, not because of any fault of the OpenBSD core but because the application had a bug that was not spotted until it was forced to be ran on a system that for example required strict writing of certain memory space. All in all these caveats should not convince a security administrator or system administrator not to deploy OpenBSD but are things to keep in mind and limitations to be aware of when planning a possible future deployment.

To conclude, we have looked at the technical superiority of OpenBSD from a security perspective and how NIST special publication 800-53 and 800-39 are fulfilled in OpenBSD. I thought it best to conclude with some first hand accounts of OpenBSD users. I posted on the form site Reddit in the OpenBSD subreddit numerous times in planning and writing this paper and got several useful replies back from the community. Reddit user 22Dec says this:

OpenBSD devs (particularly T De Raadt) have produced ingenious and simple solutions to improve security. I love them. They don't pretend to produce an absolute safe system. They pretend to make it harder to hack. Having core system (kernel + libraries) randomly arranged at every boot is simple and yet, it makes it harder to hack. Same with random process numbers. For the general user, it makes almost no difference, so I say thank you. Pledge is the same. It guaranties that process don't go over their intended boundaries (enforced at compilation). (Willett, 2019)
Reddit user flatland_spider had this to say:
OpenBSD focuses on simplicity and ease of use. Simplicity in design, simplicity in implementation, and simplicity in use. That's the trifecta, and OpenBSD generally does a good job of this. Simplicity makes things easy to reason about, it makes things easy to maintain, and it makes things nice to use. Contrast writing pf rules with iptables or ipfw, to take a shot at FreeBSD so I'm not just picking on Linux. :) pf rules are much nicer. Contrast OpenSMTPd configs with Postfix or Sendmail configs. They really think about how the system is going to be used, and build things which can be easily implemented. In general, the less cumbersome a security measure is the more likely it's going to be used. The reasons behind the pledge call are a good example of this. … Everything is pretty well reasoned. (Willett, 2019)
Finally a look at what user flexibeast had to say:

Some of the reasons i run OpenBSD on my personal server: the OpenBSD devs aren't willing to sacrifice security for performance at any cost, which is the sort of attitude that has given us things like Meltdown and related attacks. Yet OpenBSD performance is more than sufficient for my needs. The OpenBSD devs aren't obsessed with implementing the latest trendy features, or preserving backwards-compatibility at any cost; they're more focused on auditing and improving the security of existing code, and are willing to break backwards compatibility if necessary. LibreSSL is a good example of this. The OpenBSD devs work to provide sensible and secure defaults, rather than saying to sysadmins: "We dunno what's appropriate for you at all; you figure it out." OpenBSD keeps things simple for me as the sysadmin; i[sic] feel like i[sic] can understand what it's doing, and not have to treat it as a mysterious black box that does complicated things i[sic] don't actually need for my use-case. Such understanding reduces the likelihood of me doing something that turns out to inadvertently reduce the security of my system. OpenBSD's code is publicly available and publicly developed; it doesn't rely on security by obscurity. (Ask any professional cryptographer what they think of the security of proprietary crypto algorithms.). (Willett, 2019)
In conclusion, I think the opinions of these users and the facts presented above demonstrate that when choosing an operating system for a high security device; such as one that will be exposed to outside attacks. The most logical choice of operating system for that device, rather it is a mobile laptop with company secrets or an edge device like a router, firewall, or Internet server, is the latest version of OpenBSD.
References
Beck, Bob. Pledge, and Unveil, in OpenBSD. Presentation at the 2018 meeting of BSDcan, Ottawa, Canada. Retrieved from https://www.openbsd.org/papers/BeckPledgeUnveilBSDCan2018.pdf
Beck, Bob. Unveil in OpenBSD. Presentation at the 2019 meeting of BSDcan, Ottawa, Canada. Retrieved from https://www.openbsd.org/papers/bsdcan2019-unveil/index.html
Kernel relinking status from Theo de Raadt. (2017, July 1). Retrieved from https://undeadly.org/cgi?action=article&sid=20170701170044
Lucas, M. (2019). Absolute FreeBSD: the complete guide to FreeBSD. San Francisco: No Starch Press.
Lucas, M. (2013). Absolute OpenBSD Unix for the practical paranoid. San Francisco (Calif.): No Starch Press.
malloc() Guard Pages. (2003, October 16). Retrieved from https://undeadly.org/cgi?action=article&sid=20031017121955

Miller, K. OpenBSD's Position Independent Executable Implementation. Presentation at NYCBSDcon 2008, New York City, NY. Retrieved from http://www.openbsd.org/papers/nycbsdcon08-pie/

National Institute of Standards and Technology. (2017). Draft NIST special publication 800-53 revision 5 Security and Privacy Controls for Information Systems and Organizations. Gaithersburg, MD. Joint Task Force.
National Institute of Standards and Technology. (2011). NIST special publication 800-39 Managing Information Security Risk Organization, Mission, and Information System View. Gaithersburg, MD. Joint Task Force.

(n.d.). Retrieved from https://web.archive.org/web/20180217055758/http://www.openbsd.org/faq/faq1.html
OpenBSD manual page server. (n.d.). Retrieved from https://man.openbsd.org/pledge.2
OpenBSD manual page server. (n.d.). Retrieved from https://man.openbsd.org/security.8
Rapenne, S. (2019, August 14). Retrieved from https://marc.info/?l=openbsd-announce&m=156577865917831&w=2
The Center for Internet Security. (2016). The CIS Critical Security Controls for Effective Cyber Defense Version 6.1. Contributors.
Whitman, M. and Mattford, H. (2019). Management of information security. 6th ed. Cengage.

Willett, K. (2019, Oct 1). Help with University research paper on OpenBSD- seeking comments [online forum]. Retrieved from https://www.reddit.com/r/openbsd/comments/dblrbe/help_with_university_research_paper_on_openbsd/
